
A note on the Schrodinger equation for the potential A exp(-x2)-l(l+1)/x2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 3679

(http://iopscience.iop.org/0305-4470/15/12/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 3679-3684. Printed in Great Britain 

A note on the Schrodinger equation for the potential 
A exp( -x2) - Z ( Z  +l) /x2  

N Bessis, G Bessis and B Joulakianf 
Laboratoire de Spectroscople theorique, Universite Claude Bernard, Lyon I, 69622 
Villeurbanne, France 

Received 24 May 1982 

Abstract. The bound states energies and eigenfunctions of the Schrodinger equation with 
a radial gaussian potential are obtained using a perturbational and also a variational 
treatment on a conveniently chosen basis of transformed Jacobi functions. The accuracy 
of the results is fairly good. 

Recently, special interest has been drawn to the resolution of the eigenequation 

with the associated boundary conditions +(O)  = +(CO) = 0. 
In particular, the attractive radial gaussian potential has been used as a potential 

model in the theory of nucleon-nucleon scattering (Buck 1977) and eigenvalues of 
the wave equation (1) have been computed by direct numerical integration by Buck 
and have also been obtained by Stephenson (1977) using the Liouville-Green 
asymptotic method. 

In the present paper, it is shown that the traditional Rayleigh-Schrodinger method 
can lead to analytical approximations of the energies with a fairly good accuracy. 

It is clear that the gaussian potential exp( - x 2 )  behaves as (cosh x)-’ and that the 
rotational term 1 / x 2  closely resembles (sinh x ) - ’ .  Hence a suitable and exactly soluble 
unperturbed wave equation is 

A 
($+(cosh x)’-(sinh x )  

When setting A = @ *  -$, equation (2) is just the transformed Jacobi eigenfunction. 
Its solutions can be obtained either by the factorisation method (Infeld and Hull 
1951, Hadinger er a[ 1974) or more classically (see, for instance, Szego 1978). The 
eigenvalues are 

(3) E$)  = -(2n + p + I + 3y. 

9$’(x) = N,l(sinh x)“’(cosh x ) ” + ~ / ’  P?+1/29”) (cosh 2x) 

The square integrable eigenfunctions are 

(4) 
where P?*1’2. 
i Boursier du CNRS Libanais. 

is a Jacobi polynomial and N,I is the normalisation constant. 
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In order to satisfy the boundary conditions ( l ) ,  the condition CL - ( n  + 1 + 1) must 
hold. Hence, one has to choose the negative solution of g2  - $ = A, i.e. p = -(A + $)1’2. 

Following from the choice (2) of the unperturbed wave equation, the perturbation 
to be considered is 

( 5 )  

Matrix elements of V ( x )  on the basis of the functions (cl?(x) are not at all 
easy to calculate in closed form. Therefore a simple expedient is to expand the 
first term of ( 5 )  in a Taylor series in u ( x )  = (cosh x ) - ~  near x = 0, i.e. in a series of 
((cosh x ) - ~  - 1)’ = ( -  l)’(tanh x)”. One gets 

V ( x )  = A[exp( - x 2 )  - (cosh x ) - ~ ]  - 1(1+  l ) ( ~ - ~  - (sinh x ) - - ~ ) .  

exp( -x2 )  - (cosh x ) - ~  = c a,(tanh x ) ~ ’ .  
1 = z  

An appropriate expansion for the second term of ( 5 )  could be 

x - 2  - (sinh x)-*  = i (cosh x ) - ~ ’ ~  + 1 b,(tanh x ) ~ ’  
, = 2  

(7) 

where the first term has been found by noting that its expansion in powers of x 
reproduces the first two terms of the expansion in x2’ of the left-hand side, i.e. 
x - (sinh x ) - ~  = 5 - &x2 + . . . . Values of the a, and b, coefficients can be found easily, 
for instance, by noting that 

- 2  

n - 1  

(coth x)*”(exp( -x2)-  1) + (coth x ) * ~ - ~  - 1 a,(coth x)*“-” 
x - 0  , = 2  

fl-1 

x - o +  i j = 2  
b, = lim (coth x ) ~ ” [ x - ~  + 1 - (coth x)’ - i (cosh x ) - ~ / ~ ]  - 1 b,(coth xJZifl-’) 

and the use of the expansion of the functions in series of x2’. One finds 

~ 2 = - 1 / 6  ~ 3 =  -1/90 a 4  = 5712520 a5 = 1033/31800 

a6 = 0.024667708 = 0.020542460 U 8  = 0.016622222 

C Z ~ =  0.013314561 = 0.010640834 a l l  = 0,008514754 

a12 = 0.006832858 = 0.005502169 a14 = 0.004446471 

a15 = 0.003605590 

b 2 =  -3414725 b3= -386/10815 b4 = -0.003986789 

b5 = -0.002244698. (9) 
Only the first fifteen a, and the first five b, have been reproduced since they are 
sufficient to yield numerically stable results. 

Finally, the perturbation ( 5 )  can be written 

V ( x )  = 5 1(1+ 1) (cosh x ) - ~ / ~  + 1 (Aa, - 1(1+ l)b,)(tanh x ) ~ ’ ,  (10) 
, = 2  

Such an expansion (10) of V ( x )  leads to matrix elements which can be merely expressed 
in terms of Euler r functions. Indeed, let us consider the current matrix elements 

$zj (x) dx. 
(sinh x ) ~ ’  
(cosh x ) ~ ‘  
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Setting y = cosh(2x), the wavefunctions t+b$’(x) can be written (see equation (4)) 

(12) ( y  + 1 ) ( 2 @ + 1 ) / 4 p ( a . @ )  ( Y  - 1)(2a+1)/4 n ( Y )  4;:) = ~~,2-ia+i3+1)/2 

where (Y = I + and p = F.  
The matrix element (1 1) becomes 

(13) 

In order to take advantage of the orthogonality property of the wavefunctions (12), 
one can expand the P?. ’)( y )  on the finite basis of the PP’“, ’-‘I ( Y )  

A general expression of the coefficients C:), which involves ratios of r functions, has 
been given by Miller (see Miller 1968, formula (3.2) p 1178); for brevity’s sake it is 
not reproduced here. Hence, one gets 

( y )  dy. (15) 

Now, owing to the orthogonality property of the wavefunctions (12), the expression 
(15) can be rewritten 

( y  - l ) a + ~ ( ~  + 1 ) P - ~ p j P + u . P - ~ 1  ( y )  pia+”, (3-C) llm 

where k M  = min(n, m )  and 

A closed form expression of the above integral is obtained easily by using successively 
the orthogonality property of the Jacobi polynomials, then Rodrigues formula and 
integrating the result by parts k times (see, for instance, Szego 1978). Indeed, one 
can write 

00 

I p s b )  = 2-ia+b+’) jl ( - I )” (  + l)bPp- b ,  b’ dy 

where 

is the coefficient of y k  in the Jacobi polynomial Ppsb’(y).  
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The last integral in (18)  is found in tables (see, for instance, Gradshteyn and Ryzhik 
1980) and one gets 

1 P 3 b )  = $  T(k + a  + l)r( - k - a  - b )  
T(k + l ) r (  - k - b ) ( 2 k  + U  + b + 1 ) ‘  (19)  

Finally, the required matrix element between normalised wavefunctions can be written 
(see equations ( l l ) ,  (15), (17)  and ( 1 9 ) )  

kM 

(20)  
lom ,oi (sinh x ) 2 u  

G n l  ( X I  (cosh X ) 2 a  $E!(x) dx = X(kn)(u, u )X;” (u ,  U )  
k = O  

An improvement of the technique can be obtained by expanding exp( -x2 )  in a 
Taylor series in u ( x )  = (cosh x ) - ~  near the maximum xo of the electronic density 
function l$!,?)(x)12, or, more crudely, for sake of simplicity, near the maximum xO of 
the density of the n = 0 state. In that case, it is defined by the condition (tanh xo)’ = 
- ( I  + 1) / (p  ++). This last choice of xo is found to be acceptable on average for all 
states and has been used when defining the unperturbed functions. 

When truncating the expansion of exp(-x’) after the first two terms, one gets 

expi - x ’) = do + d l  (cosh x )-* (22)  
where 

d o  = exp(-xi)(l  -xo  coth xo) dl = exp(-xi)xo (cosh ~ ~ ) ~ / s i n h  xo. 

Then, instead of the unperturbed eigenequation ( 2 ) ,  one considers the Jacobi eigen- 
equation 

2 i d o - p  
d2 Ad1 

( Z + ( c o s h  x )  (sinh x ) ~  

The associated eigenvalues are 

25‘:;) = -(2n + p ’ + I + z ) 2 - A d o  

with p’  = - ( A d l  
The perturbation to be considered is 

V ( x )  = V(x)+ A ( l - d d A d o ,  
(cosh x ) ~  

The energy, at the first order of the perturbation, is 

SF,’= - (C$$)p(x)~C$$)) 
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where the calculation of matrix elements of V ( x )  in the basis of the 45) is the same 
(with w ’  instead of p )  as that of V ( x )  in the basis of the G;?, 

It is shown in table 1 that, for the case A = 400 and the states n and I = 0-7, the 
above expression for %$) leads to results which compare well with those obtained by 
direct integration of the Schrodinger equation (Buck 1977). These results are corrob- 
orated by a variational calculation on a truncated basis of 4:;) functions (7-10 basis 
functions). The coefficients of the eigenvectors have been obtained by diagonalisation 
of the variational matrix but are not reproduced here. By inspection, one can see 

Table 1. Bound states eigenvalues. First line, perturbational calculation; second line, 
variational calculation; third line, numerical integration (Buck 1977); fourth line, 
Liouville-Green method (Stephenson 1977). 

1 2 3 4 5 6 7 
- 

341.888 304.449 
341.895 304.463 
341.9 304.5 
341.6 304.2 

269.646 235.453 
269.644 235.450 
269.7 235.5 
269.4 235.2 

203.955 173.226 
203.983 173.244 
204.0 173.3 
203.7 173.0 

145.285 118.331 
145.377 118.381 
145.4 118.4 
145.1 118.1 

94.344 71.595 
94.454 71.617 
94.5 71.6 
94.2 71.4 

52.131 34.130 
52.139 34.119 
52.2 34.2 
51.9 33.9 

19.920 7.269 
19.921 8.045 
20.0 8.1 
19.7 7.8 

268.089 
268.111 
268.1 
267.9 

202.434 
202.431 
202.4 
202.2 

143.803 
143.808 
143.8 
143.6 

92.864 
92.873 
92.9 
92.6 

50.564 
50.557 
50.6 
50.3 

18.120 
18.419 
18.5 
18.2 

-3.117 
(0.2) 
- 
- 

232.843 
232.875 
232.9 
232.6 

170.640 
170.639 
170.6 
170.4 

115.755 
115.752 
115.8 
115.5 

68.977 
68.973 
69.0 
68.7 

31.375 
3 1.499 
31.5 
31.3 

4.257 
5.6 
- 
- 

198.755 165.875 
198.797 165.925 
198.8 165.9 
198.5 165.7 

140.128 110.970 
140.134 110.989 
140.1 111.0 
139.9 110.7 

89.167 64.141 
89.169 64.180 
89.2 64.2 
88.9 63.9 

46.788 26.446 
46.846 26,727 
46.9 26.8 
46.6 26.5 

14.187 -0.797 
14.794 (1.1) 
14.9 - 
14.6 - 

134.260 103.986 
134.317 104.040 
134.3 104.1 
134.1 103.9 

83.255 57.099 
83.295 57.171 
83.3 57.2 
83.0 56.9 

40.814 19.371 
40.950 19.721 
41.0 19.8 
40.7 19.5 

8.152 
8.995 
9.1 
8.8 

-0.919 
1.463 
1.4 
1.1 
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that, in all cases, there is a predominant coefficient and that the mixing of the 
unperturbed 4;;) states is small and, naturally, increases with the values of n and 1. 
This trend is followed by the value S of the third finite difference in n of the eigenvalues 
8fli : 

A i  (gn i )  = 3 ( 8 n + i , i  - g n + 2 , i )  - ( g n i  - g n + 3 , i )  = S. 

It is easily verified (equation (24) or (3)) that for the unperturbed eigenvalues 82’ 
the value of 6 is exactly zero for any n and I .  In table 1, the value of S ranges from 
0.5 to 2.3 as n and 1 increase. 

Acknowledgment 

Dr B Buck (University of Oxford) is acknowledged for correspondence. 

References 

Buck B 1977 Nucl. Phys. A 275 246 
Gradshteyn I S and Ryzhik I M 1980 Tables oflntegrals, Series and Products last edn (New York: Academic) 

Hadinger G, Bessis N and Bessis G 1974 J.  Math. Phys. 15 716 
Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21 
Miller W J r  1968 J. Math. Phys. 9 1175 
Stephenson G 1977 J.  Phys. A :  Math. G e n .  10 L229 
Szego G 1978 Orthogonal Polynomials (American Mathematical Society Colloquium Publications, vol 

pp 285-6 

XXIII, last edn) pp 67-8 


